Newsletter Nr. 04/2020

Sensitivität und Spezifität von Tests: Kein Testverfahren liegt zu 100% richtig. Ein Teil der Ergebnisse wird positiv sein, obwohl der Getestete das, worauf getestet wurde, nicht hat. Genauso wird der Test bei einem Teil derjenigen mit dem fraglichen Merkmal negativ sein. Nehmen wir an, Peter hat einen Corona-Test machen lassen, das Ergebnis ist positiv. Was heißt das für ihn? Dieser Frage gehen wir in unserem Blog nach.

Biotin stört Bestimmung von Laborwerten: Herzinfarkt, obwohl das Troponin T unauffällig ist? Verdacht auf Hyperthyreose ohne klinische Symptome? Bei Patienten, die Biotin einnehmen, kann das passieren, denn Biotin verfälscht die Bestimmung von Troponin, TSH und anderen Laborwerten, wenn sie auf Streptavidin-Basis gemessen werden. Einzelheiten dazu finden Sie in unserem Blog.

Bestimmung von Tumormarkern: Zwischen gebotener diagnostischer Sorgfalt und Überdiagnostik ist manchmal wenig Raum. Bei einer 50-jährigen Patientin mit diversen Vorerkrankungen wurde wegen neu aufgetretenem Unwohlsein und Appetitlosigkeit der Verdacht auf ein Ovarialkarzinom formuliert und der Tumormarker Ca-125 gemessen. Dieser Wert lag sechsfach über dem oberen Referenzwert. Welche Folgen dies hatte, wie das Vorgehen zu bewerten ist und wann der Ca-125 gemessen werden soll, lesen Sie in unserem Blog.

Cholesterolsenkung: Auch im Alter noch nützlich? Erhöhte LDL-Cholesterol-Werte sind weithin als kausaler Risikofaktor für Atherosklerose und Myokardinfarkt akzeptiert. Leitlinien sehen in ihnen für alle Altersgruppen zwischen 40 und 75 Jahren eine Indikation zur Primärprävention. Allerdings wird der klinische Nutzen einer Cholesterol-senkenden Pharmakotherapie in höherem Lebensalter angesichts der kürzer werdenden erwartbaren weiteren Lebenszeit oft bezweifelt. Zu diesem Thema wurden aktuell drei neue Studien vorgelegt. In unserem Blog haben wir die wichtigsten Ergebnisse für Sie zusammengefasst.

Workshop-Termin: Der nächste Falldiskussions-Workshop findet am 24.04.2021 von 10 bis 18:30 statt. Da die Covid-Entwicklung nicht absehbar ist, wird er online stattfinden, wie der letzte Workshop. Wie bitte, ganztägiger Online-Workshop? Funktioniert das? Ja, siehe Evaluationsbeitrag. Hier melden Sie sich an.

Fachapotheker-Akkreditierungen: Im nächsten Jahr führen wir unser Altersgruppenseminar wieder zweigleisig durch. Die Themen Geriatrie und Pädiatrie sind immer dabei, wählen kann man zwischen Neurologie & Psychiatrie oder Schwangerschaft & Stillzeit. Akkreditierungen sind beantragt für die Seminare A.1, A.9., A.10 und A.11 in der Allgemeinpharmazie (A.1 und A.10 je nach gewähltem Gleis) sowie für das Seminar 6 im „Medikationsmanagement im Krankenhaus“. Auch anerkannt im Masterstudium Clinical Pharmacy Practice.

Seminar-Fahrplan 2021: Unser Fahrplan für das nächste Jahr sieht das erwähnte Altersgruppenseminar für den Start vor. Los geht es am 21.01.2021. Ab 18.03.2021 folgt das Seminar „Interpretation von Laborparametern“.

Nach diesem ungewöhnlichen Jahr voller Herausforderungen wünschen wir allen Kolleginnen und Kollegen erholsame Feiertage und einen unbeschwerten Jahreswechsel. Bleiben Sie gesund!

Jasmin Hamadeh ——Dr. Dorothee Dartsch
(Mediendidaktik)-__—-(Klinische Pharmazie)
mit dem Campus-Team

Details zu allen Themen auf unserer Website. Die hellblau hervorgehobenen Begriffe sind mit den entsprechenden Internetseiten verlinkt.

Hier können Sie unseren Newsletter herunterladen: PDF-Datei

Bildnachweis: © CaP Campus Pharmazie GmbH

War dieser Artikel interessant für Sie? Dann teilen Sie ihn doch mit Kollegen:

Positiver Test – was heißt das?

Kein Testverfahren liegt zu 100% richtig. Ein Teil der Ergebnisse wird positiv sein, obwohl der Getestete das, worauf getestet wurde, nicht hat (falsch Positive). Genauso wird der Test bei einem Teil derjenigen mit dem fraglichen Merkmal negativ sein (falsch Negative).

Ein guter Test liegt natürlich in beide Richtungen möglichst selten falsch. Oft ist es aber so, dass ein Test, der besonders empfindlich und zuverlässig ist, immer mal ein paar falsch positive Ergebnisse produziert. Umgekehrt liefert ein Test, der entwickelt wurde, um Verwechslung mit ähnlichen Merkmalen sicher auszuschließen, hin und wieder falsch negative Ergebnisse.

Nehmen wir an, es ginge um einen Corona-Antigentest, der Aufschluss geben soll, ob jemand mit SARS-CoV2 infiziert ist oder nicht. Peter hat einen Abstrich und Test machen lassen, das Ergebnis ist positiv. Was heißt das für ihn?

Nebenbei: Eine Liste der aktuell verfügbaren Corona-Antigentests mit Angaben zur Sensitivität und Spezifität findet sich auf den Seiten des BfArM. Die Spannweite der Testqualität liegt im Moment bei der Sensitivität zwischen 80 und 98%, bei der Spezifität zwischen 97 und 100%.

Sagen wir, der verwendete Test hat eine Sensitivität von 94% und eine Spezifität von 97%.

Die Sensitivität beschreibt den Anteil der wahren Positiven unter den Infizierten. 94% Sensitivität heißt, 94 von 100 Corona-Infizierten haben mit diesem Test ein positives, 6 ein (falsch) negatives Ergebnis.

Die Spezifität beschreibt den Anteil der wahren Negativen unter den Gesunden. 97% Spezifität heißt, 97 von 100 nicht infizierten Personen haben ein negatives, 3 ein (falsch) positives Ergebnis.

Was Sensitivität und Spezifität aussagen

Bei hoher Sensitivität bedeutet ein negativer Test, dass eine Infektion mit großer Sicherheit ausgeschlossen werden kann, weil es nur wenig falsch negative Befunde gibt. Umgekehrt sagt bei hoher Spezifität ein positives Testergebnis aus, dass wahrscheinlich eine Infektion vorliegt. Wenn man vermeiden möchte, dass jemand durch Sorglosigkeit aufgrund eines falsch negativen Ergebnisses andere ansteckt, sollte der Test eine möglichst hohe Sensitivität haben. Würde man niemanden zu Unrecht in Quarantäne schicken wollen, wäre eine hohe Spezifität erstrebenswert.

Die Frage, die Peter sich stellt, ist: „Wie groß ist angesichts des positiven Tests die Wahrscheinlichkeit, tatsächlich infiziert zu sein?“ Diese Frage kann anhand der Sensitivität und Spezifität nicht beantwortet werden. Was wir dafür brauchen, sind positive und negative Vorhersagewerte, die sich auf die Zahl der Getesteten beziehen.

Der positive Vorhersagewert (PPV) ist der Anteil der wahr Positiven an allen positiven Testergebnissen, anders gesagt, der Anteil positiv Getesteter, die auch wirklich infiziert sind. Der negative Vorhersagewert (NPV) ist der Anteil der wahr negativen an allen negativen Testergebnissen, d.h. der Anteil negativ Getesteter, die tatsächlich nicht infiziert sind.

PPV und NPV sind – anders als Sensitivität und Spezifität – für einen bestimmten Test nicht unveränderlich, sondern hängen von der Prävalenz der Erkrankung ab. Da wird es jetzt ein bisschen komplizierter.

Die folgende Abbildung verdeutlicht Peters Situation innerhalb einer Bevölkerung, die einmal eine Prävalenz der Infektion von 20% hat (A) sowie einmal von 80% (B). Der Test hat nach wie vor eine Sensitivität von 94% und eine Spezifität von 97%.

Im Szenario A sind 90,5% der positiv Getesteten infiziert, im Szenario B 98,7%. Mit seinem positiven Test hat Peter also bei einer Prävalenz von 20% eine Wahrscheinlichkeit von 90,5%, tatsächlich infiziert zu sein. Wenn die Prävalenz höher ist, bei den 80% aus dem Szenario B, ist auch die Wahrscheinlichkeit höher, dass er wirklich infiziert ist, nämlich 98,7%.

Nehmen wir an, Heidi hat ein negatives Testergebnis erhalten. Bei einer Prävalenz von 20% beträgt die Wahrscheinlichkeit, dass sie wirklich nicht infiziert ist, 98,7%. Liegt die Prävalenz dagegen bei 80%, ist diese Wahrscheinlichkeit geringer, nämlich nur 79,2%.

Generell gilt: Mit steigender Prävalenz steigt auch der PPV, weil es weniger falsch positive auf jedes wahre positive Ergebnis gibt. Gleichzeitig sinkt der NPV, weil weniger wahre auf jedes falsch negative Ergebnis kommen.

Einfluss der Testbedingungen

Beim ungezielten Corona-Screening einer repräsentativen Stichprobe aus der Bevölkerung ist die Prävalenz gering, aktuell bei ca. 0,4%. Der PPV ist bei einer solchen Teststrategie niedrig. Mit dem oben gewählten Test würde er bei 12% liegen, d.h. jemand mit einem positiven Testergebnis ist nur mit 12%iger Wahrscheinlichkeit wirklich infiziert. Werden aber nur diejenigen getestet, die Symptome haben oder mit jemandem in Kontakt waren, der infiziert ist, erhöht sich die Prävalenz innerhalb dieser ausgewählten Population. Steigt die Prävalenz durch diese Maßnahme z.B. auf immer noch niedrige 10%, erhöht sich der PPV bereits auf 78%.

Wird der Nasen-Rachen-Abstrich nicht richtig durchgeführt und bleibt zu oberflächlich, sinkt die Sensitivität des eingesetzten Tests. Mit unserem Beispieltest liegt die Sensitivität dann nicht mehr bei 94%, sondern vielleicht nur noch bei 70%. In der Folge nehmen beide Vorhersagewerte ab: der PPV von 77,7 auf 72,2%, der NPV von 99,3 auf 96,7%. Mit einem negativen Test beträgt die Wahrscheinlichkeit, dennoch infiziert zu sein, damit nicht mehr 0,7%, sondern 3,7%, sie ist also um den Faktor 4,7 erhöht.

Auf den Seiten des RKI ist ein Rechner zu finden, mit dem PPV und NPV für Test verschiedener Sensitivitäten und Spezifitäten sowie verschiedene Prävalenzen berechnet werden kann. Eine Infografik des RKI und ein Artikel in der Ärztezeitung (Leuker, 17.11.2020) erklären und veranschaulichen grafisch den Einfluss verschiedener Teststrategien (die wichtig für die Prävalenz in der getesteten Population ist) auf die Vorhersagewerte.

Was man Patienten mitgeben kann, die Rat zu ihrem Testergebnis suchen:

  • Kein Test ist zu 100% akkurat.
  • Wenn im Rahmen einer gezielten Strategie getestet wurde und das Ergebnis positiv ist, besteht eine hohe Wahrscheinlichkeit, dass eine Infektion vorliegt.
  • Wenn Symptome vorliegen, ist die Wahrscheinlichkeit einer Infektion groß, auch wenn das Testergebnis negativ ist.

Quellen

Akobeng AK et al.: Understanding diagnostic tests 1: sensitivity, specificity and predictive values. Acta Pædiatrica 2006; 96:338–341

Kumleben N et al.: Test, test, test for COVID-19 antibodies: the importance of sensitivity, specificity and predictive powers. Public Health 2020; 185:88–90

Watson J et al.: Interpreting a covid-19 test result. BMJ 2020;369:m1808 doi: 10.1136/bmj.m1808

Bildnachweis: © magele-picture / Adobe Stock

Das Seminar zum Thema: Interpretation von Laborparametern

War dieser Artikel interessant für Sie? Dann teilen Sie ihn doch mit Kollegen: